Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

NIMCET Previous Year Questions (PYQs)

NIMCET Boolean Algebra PYQ


NIMCET PYQ
Which one of the following Boolean algebraic rule is correct?





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution

A + A'B = (A + A') . (A + B)
             =  1 . (A + B) 
             = A + B


NIMCET PYQ
Which term is redundant in the expression AB + A'C + BC ?





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution


NIMCET PYQ
The total number binary function that can be defined using n Boolean variables is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ

Solution


NIMCET PYQ
Assume x' represents negation of x the Boolean function x'y' + xy + x'y is equivalent to?





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution


NIMCET PYQ
The equivalence of given expression x+x'y with Boolean theorem is….





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2020 PYQ

Solution

x+x'y
=(x+x')(x+y)
=(x+y)

NIMCET PYQ
Consider the following minterm for F:F(P, Q, R, S) = Σ0, 2, 5, 7, 8, 10, 13, 15. The minterms 2, 7, 8, and 13 are don't care terms. The minimal sum of products form for F is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
Cosider the following Boolean Expression for F:
$F(P,Q,R,S)=PQ+\overline{P}QR+\overline{P}Q\overline{R}S$ . 
The minimum sum of products form of F is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
The number of minterms in a $n$ variable truth tableis





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
Let $\oplus$ and $\odot$ denote the Exclusive - OR and Exclusive-NOR operations respectively. Which of the following is not correct?





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
The reduced form of the Boolean function $F=xyz+xyz^{\prime}^{}+x^{\prime}yz+xy^{\prime}z$ is





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2023 PYQ

Solution


NIMCET PYQ
How many Boolean expressions can be be formed with 3 Boolean variables? 






Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2019 PYQ

Solution


NIMCET PYQ
The minimum number of NAND gates required for implementing the Boolean expression $AB+A\, \overline{B}C+A\, \overline{B}\, \overline{C}$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution

$AB+A\, \overline{B}C+A\, \overline{B}\, \overline{C}$
=$AB+AB'C+AB'C'$
=$AB+AB'(C+C')$
=$AB+AB'$
=$A(B+B')$
=A


NIMCET PYQ
Which of the following is equivalent to the Boolean expression: 
$(X+Y).(X+\overline{Y}).(\overline{X}+Y)$





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution

$(X+Y).(X+\overline{Y}).(\overline{X}+Y)$
=$(X+Y)(X+Y')(X'+Y)$
=$(XX+XY+YX+YY')(X'+Y)$
=$(X+XY)(X'+Y)$
=$X(1+Y)(X'+Y)$
=$X(X'+Y)$
=$XX'+XY$
=$XY$

NIMCET PYQ
Write the simplified form of the Boolean expression
(A+C)(AD+AD')+AC+C





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution

(A+C)(AD+AD')+AC+C
=(A+C)A(D+D')+C(A+1)
=(A+C)+C
=A+C

NIMCET PYQ
The Boolean expression AB+ AB' + A'C + AC is unaffected by the value of the Boolean variable





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution

$\begin{array}{ll}{A(B+\overline{B})+C(A+\overline{A})} \\ {A+C}\, \end{array}$

NIMCET PYQ
If a signal passing through a gate is inhibited by sending a low into one of the inputs, and the output is HIGH, the gate is a(n):





Go to Discussion

NIMCET Previous Year PYQNIMCET NIMCET 2022 PYQ

Solution

Output is high if any of the input is low. The truth table for NAND gate is:
 AOutput 
 0 0
 0 1 1
 1 0 1
 1 1 1
Table representing NAND Gate.


NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...